Abstract
A lipase from Aspergillus niger, immobilized by physical adsorption on hydrophobic hollow fibers made of microporous polypropylene, was used to effect the hydrolysis of the glycerides of melted butterfat at 40, 50, 55, and 60°C (pH 7.0), and at pH 3.0, 4.0, 5.0, 7.0, 8.0, and 9.0 (40°C). McIlvane buffer and melted butterfat were pumped cocurrently through the hollow fiber reactor. The concentrations of ten different free fatty acids in the effluent oil stream were measured by HPLC. Multiresponse nonlinear regression methods were employed to fit the data to multisubstrate rate expressions derived from a Ping Pong Bi Bi mechanism in which the rate controlling step is deacylation of the enzyme. Thermal deactivation of the immobilized lipase was also included in the mathematical model of reactor performance. A postulated normal distribution of vmax with respect to the number of carbon atoms of the fatty acid residue (with an additive correction for the number of double bonds) was found to provide the best sta...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.