Abstract

Sn6O4(OH)4, a hydrolysis product of Sn(NMe2)2, is transformed to tin (II) or tin (IV) oxide by solid and solution phase processing. Tin (II) oxide is formed by heating Sn6O4(OH)4 at ⩽200°C in air or under inert atmosphere. Tin (IV) oxide nanoparticles are formed in the presence of a carboxylic acid and base in air at room temperature. IR spectroscopy, Raman spectroscopy, thermogravimetry (coupled with infrared spectroscopy), powder X-ray diffraction, high temperature X-ray diffraction, scanning electron and transmission electron microscopy are used for the characterization of Sn6O4(OH)4 and the investigation of its selective decomposition into SnO or SnO2. Spectroscopic and X-ray diffraction results indicate that SnO is formed by the removal of water from crystalline Sn6O4(OH)4. SEM shows octahedral morphology of the Sn6O4(OH)4, SnO and SnO2 with particle size from 400nm–2μm during solid state conversion. Solution phase transformation of Sn6O4(OH)4 to SnO2 occurs in the presence of potassium glutarate and oxygen. SnO2 particles are 15–20nm in size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.