Abstract

Self-assembled monolayer films of (3-mercaptopropyl)trimethoxysilane (3MPT) and their hydrolysis products on Ag and Au surfaces are characterized using Raman spectroscopy, FTIR spectroscopy, ellipsometry, X-ray photoelectron spectroscopy (XPS), and electrochemistry. 3MPT monolayers are formed through metal−thiolate bonding through the S atom on both metals, similar to other alkanethiol chemisorption chemistries. The orientation of 3MPT molecules in these monolayers is similar on both metals. Prior to hydrolysis, the molecules form an organized monolayer with the methoxy headgroups oriented largely parallel to the surface and the propyl chain in a largely trans conformation. When the methoxy groups are hydrolyzed, the 3MPT molecules cross-link through the formation of siloxane bonds. Although the surface vibrational spectroscopy indicates the presence of a small number of unreacted silanol groups on the siloxane surface, cyclic voltammetry of underpotential deposition of Pb suggests that the Si−O−Si networ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.