Abstract

Lacustrine records from the northern margin of the East Asian monsoon generate a conflicting picture of Holocene monsoonal precipitation change. To seek an integrated view of East Asian monsoon variability during the Holocene, an 8.5-m-long sediment core recovered in the depocenter of Dali Lake in central-eastern Inner Mongolia was analyzed at 1-cm intervals for total organic and inorganic carbon concentrations. The data indicate that Dali Lake reached its highest level during the early Holocene (11,500–7,600 cal yr BP). The middle Holocene (7,600–3,450 cal yr BP) was characterized by dramatic fluctuations in the lake level with three intervals of lower lake stands occurring 6,600–5,850, 5,100–4,850 and 4,450–3,750 cal yr BP, respectively. During the late Holocene (3,450 cal yr BP to present), the lake displayed a general shrinking trend with the lowest levels at three episodes of 3,150–2,650, 1,650–1,150 and 550–200 cal yr BP. We infer that the expansion of the lake during the early Holocene would have resulted from the input of the snow/ice melt, rather than the monsoonal precipitation, in response to the increase in summer solar radiation in the Northern Hemisphere. We also interpret the rise in the lake level since ca. 7,600 cal yr BP as closely related to increased monsoonal precipitation over the lake region resulting from increased temperature and size of the Western Pacific Warm Pool and a westward shifted and strengthened Kuroshio Current in the western Pacific. Moreover, high variability of the East Asian monsoon climate since 7,600 cal yr BP, marked by large fluctuations in the lake level, might have been directly associated with variations in the intensity and frequency of the El Nino-Southern Oscillation (ENSO) events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call