Abstract

The study aimed to unveil the hydrological system and water balance of the ungauged crater lakes with major focus on the Emakati Lake which occupy 46% of the Empakaai Crater associated to the East African Rift Valley and form part of the Northern Crater Highlands. Water samples for analysis of NO3 - , Cland stable isotopes (2H and 18O) were collected from the Emakat lake, springs of the inner, outer and the foot of the Empakaai Crater rims. A combination of satellite data such as digital elevation model (DEM), Climate Hazards Group Infrared Precipitation with Station data (CHIRPS), net shortwave solar radiation, surface temperature, and the computation methods such as Curve Number (CN) Model, DeBruin–Keijman (D-K) Model enabled the computation of water balance components such as Lake level changes, precipitation, runoff and evaporation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.