Abstract

Although hydrological effects on gravity are known nearly as long as the influence of barometric pressure, they are not as well understood as the latter. The improvement of gravity data quality during the last years adds weight to the importance of understanding the hydrological influence. Moxa observatory is one station at which studies regarding hydrological effects are carried out. From soil moisture, water level and meteorological observations the effects of different hydrological contributors including snow can be modelled and compared to the gravity residuals of the superconducting gravimeter (SG). The total peak-to-peak amplitude amounts to 35 nm/s2. Contributions from the various areas around the observatory partly compensate due to the hilly morphology. The comparison between residuals and computed total hydrological effect yields a good agreement, but also shows that not all hydrological influences have been taken into account. A significant additional hydrological influence is due to the hill flank near the SG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.