Abstract

Shifts in the hydrologic regime of Florida’s Apalachicola River have been attributed to anthropogenic changes throughout its watershed, including local dam construction. To assess impacts of those shifts on floodplain forests, we reconstructed tree growth using dendrochronology and compared these trends with hydrological and climatic variables. Comparisons of stream-gage data before and after dam construction on the Apalachicola River revealed statistically significant mean declines in annual average stage. Mean minimum annual stages, rise rates, and fall rates also decreased, while hydrograph reversals increased. Growth in four tree species correlated strongly with site-specific inundation parameters. A wetter climate in the two decades following dam construction and fine-scale fluctuation of the hydrograph may have set the stage for positive growth releases. Logging and hurricane wind throw events may have also contributed. However, drier conditions in the last two decades are now exacerbated by stage-discharge declines that had been masked previously. Tree growth rates and recruitment have decreased and, in the absence of a major disturbance, the forest canopy is composed of an older cohort of individuals. Our findings highlight how hydrograph variability, climate change, and vegetation disturbance are all relevant for gaging and anticipating the range of impacts of river modification on floodplain forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call