Abstract
Abstract How mountain hydrology at different elevations will respond to climate change is a challenging question of great importance to assessing changing water resources. Here, three North American Cordilleran snow-dominated basins—Wolf Creek, Yukon; Marmot Creek, Alberta; and Reynolds Mountain East, Idaho—each with good meteorological and hydrological records, were modeled using the physically based, spatially distributed Cold Regions Hydrological Model. Model performance was verified using field observations and found adequate for diagnostic analysis. To diagnose the effects of future climate, the monthly temperature and precipitation changes projected for the future by 11 regional climate models for the mid-twenty-first century were added to the observed meteorological time series. The modeled future was warmer and wetter, increasing the rainfall fraction of precipitation and shifting all three basins toward rainfall–runoff hydrology. This shift was largest at lower elevations and in the relatively warmer Reynolds Mountain East. In the warmer future, there was decreased blowing snow transport, snow interception and sublimation, peak snow accumulation, and melt rates, and increased evapotranspiration and the duration of the snow-free season. Annual runoff in these basins did not change despite precipitation increases, warming, and an increased prominence of rainfall over snowfall. Reduced snow sublimation offset reduced snowfall amounts, and increased evapotranspiration offset increased rainfall amounts. The hydrological uncertainty due to variation among climate models was greater than the predicted hydrological changes. While the results of this study can be used to assess the vulnerability and resiliency of water resources that are dependent on mountain snow, stakeholders and water managers must make decisions under considerable uncertainty, which this paper illustrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Hydrometeorology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.