Abstract

Drought is an extreme phenomenon that will likely increase in frequency and severity in the current context of climate change. As such, it must be studied to improve the decision-making process in affected areas. As a semi-arid zone, the Guadalquivir River basin, located in the southern Iberian Peninsula, is an interesting area to perform this study. The relationship between meteorological and hydrological droughts is studied using drought indices with data from 1980 to 2012. The chosen indices are the Standardized Streamflow Index (SSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). Their correlations are calculated, based on SPEI accumulation periods, and these values are analyzed with a principal component analysis to find spatial patterns in drought behavior inside the basin. This analysis was performed for the continuous series and also for monthly series, to account for seasonal changes. It has been found that the relationship of drought types occurs at different time scales depending mainly on orography and catchment area. Two main patterns were found. Generally, for low altitudes and small catchment areas, accumulation periods are shorter indicating that hydrological system in this area respond rapidly to meteorological conditions. In mountainous parts of the basin, longer accumulation periods have a stronger influence due to effects such as snowmelt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call