Abstract

A proper understanding of hydrological processes is vital for water resource assessment, management, and conservation at a local, national, and global scale. The role of hydrological models is critically important in rarely studied ungauged catchments including of Kobo-Golina, in the Danakil basin of Ethiopia. The main objective of this research is to model the hydrology of the Kobo-Golina catchment using the completely restructured SWAT (SWAT+) model. Validated reanalysis river flow from the Global Flood Awareness System (GloFAS) and actual evapotranspiration (AET) from Moderate Resolution Imaging Spectroradiometer (MODIS) were used for single and multi-variable calibration. It is found that the multi-variable calibration scenario reasonably attained the minimum satisfactory performance limit for both variables (NSE = 0.67, R2 = 0.68, PBias = −9.68%, and RSR = 0.57 for calibration of GloFAS flow; and NSE = 0.56, R2 = 0.63, RSR = 0.66, PBias = 3.86 for calibration of MODIS AET). The model simulation showed that evapotranspiration accounts for 47% of the input water while surface runoff, lateral flow, and groundwater recharge account for 30%, 1.53%, and 21.4%, respectively. The simulated mean annual streamflow at the Basin outlet is 10.6 m3/s. The monthly low flow occurs in June with a median flow of 1.43 m3/s and a coefficient of dispersion of 0.67. High flows occur in August, with a median flow of 16.55 m3/s and a coefficient of dispersion of 1.55. The spatial distribution of simulated runoff was depicted as being higher in the floodplains and along the riparian/drainage lines, whereas upland areas showed lower runoff. The maximum monthly recharge occurs in September with a recharge value of 78.2 mm. The findings of the study suggested that both surface water harvesting and groundwater exploitation can be sought in floodplain areas while conserving the uplands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call