Abstract
Peatlands respond to natural hydrologic cycles of precipitation and evapotranspiration with reversible deformations due to variations of water content in both the unsaturated and saturated zone. This phenomenon results in short‐term vertical displacements of the soil surface that superimpose to the irreversible long‐term subsidence naturally occurring in drained cropped peatlands because of bio‐oxidation of the organic matter. These processes cause changes in the peat structure, in particular, soil density and void ratio. The consequential changes in the hydrological parameters need to be incorporated in water flow dynamical models. In this paper, we present a new constitutive relationship for the soil shrinkage characteristic (SSC) in peats by describing the variation of porosity with moisture content. This model, based on simple physical considerations, is valid for both anisotropic and isotropic three‐dimensional peat deformations. The capability of the proposed SSC to accurately describe the deformation dynamics has been assessed by comparison against a set of laboratory experimental results recently published. The constitutive relationship has been implemented into a Richards' equation–based numerical code and applied for the simulation of the peat soil dynamics as observed in a peatland south of the Venice Lagoon, Italy, in an ad hoc field experiment where the relevant parameters are continuously measured. The modeling results match well a large set of field data encompassing a period of more than 50 days and demonstrate that the proposed approach allows for a reliable reproduction of the soil vertical displacement dynamics as well as the hydrological behavior in terms of, for example, water flow, moisture content, and suction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.