Abstract

AbstractTo make successful predictions in ungauged basins (PUB) exploring how to facilitate the identification of catchment characteristics from readily available information is as important as improving the theoretical representation of different hydrological processes. Today in most parts of the world, a significant amount of spatial information from GIS overlays and remote sensing imagery is available. However the hydrological information derived from such sources cannot be the complete answer to the PUB problem. Thus, to implement a field measurement program and measure the discharge hydrograph during a short observation period might be a cost‐effective strategy to improve predictive capability. In this study, we explore the most effective way to extract the information content from a limited period of observation. At first, the effectiveness of the phase correction technique using Dynamic Time Warping is demonstrated with long periods of observations to reduce the adverse influence of timing error, which is the discrepancy between the time of the real peak discharge and the observed one which may be disinformative for model identification. Then, by using the Monte Carlo approach with short periods of data, both the phase correction technique and the ensemble mean approach, in which a weighted ensemble mean of simulations using acceptable parameter sets is used as a prediction, are compared with conventional methods. We found that the ensemble mean approach without the phase correction technique could give the most robust model identification when the observation period is shorter than 2 weeks. We also found that the phase correction technique could work well with observation periods of 1 year or longer but was not always effective with shorter periods. These results were strongly dependent on the application catchment. Copyright © 2011 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.