Abstract

Abstract. High Altitude Wetlands of the Andes (HAWA) belong to a unique type of wetland within the semi-arid high Andean region. Knowledge about HAWA has been derived mainly from studies at single sites within different parts of the Andes at only small time scales. On the one hand, HAWA depend on water provided by glacier streams, snow melt or precipitation. On the other hand, they are suspected to influence hydrology through water retention and vegetation growth altering stream flow velocity. We derived HAWA land cover from satellite data at regional scale and analysed changes in connection with precipitation over the last decade. Perennial and temporal HAWA subtypes can be distinguished by seasonal changes of photosynthetically active vegetation (PAV) indicating the perennial or temporal availability of water during the year. HAWA have been delineated within a region of 12 800 km2 situated in the Northwest of Lake Titicaca. The multi-temporal classification method used Normalized Differenced Vegetation Index (NDVI) and Normalized Differenced Infrared Index (NDII) data derived from two Landsat ETM+ scenes at the end of austral winter (September 2000) and at the end of austral summer (May 2001). The mapping result indicates an unexpected high abundance of HAWA covering about 800 km2 of the study region (6 %). Annual HAWA mapping was computed using NDVI 16-day composites of Moderate Resolution Imaging Spectroradiometer (MODIS). Analyses on the relation between HAWA and precipitation was based on monthly precipitation data of the Tropical Rain Measurement Mission (TRMM 3B43) and MODIS Eight Day Maximum Snow Extent data (MOD10A2) from 2000 to 2010. We found HAWA subtype specific dependencies on precipitation conditions. A strong relation exists between perennial HAWA and snow fall (r2: 0.82) in dry austral winter months (June to August) and between temporal HAWA and precipitation (r2: 0.75) during austral summer (March to May). Annual changes in spatial extend of perennial HAWA indicate alterations in annual water supply generated from snow melt.

Highlights

  • High Altitude Wetlands (HAWs) are situated in many mountain regions of the world (e.g., Himalaya or Alps)

  • The characteristics of High Altitude Wetlands of the Andes (HAWA) subtypes had to be transformed into HAWA subclasses following the HAWA mapping design

  • The HAWA mapping design was the conceptual frame for the HAWA mapping procedure which was applied for both HAWA mappings utilizing first Landsat ETM+ and secondly Moderate Resolution Imaging Spectroradiometer (MODIS) datasets

Read more

Summary

Introduction

High Altitude Wetlands (HAWs) are situated in many mountain regions of the world (e.g., Himalaya or Alps). HAWs can be described as areas of swamp, marsh, meadow, fen or peatland whether natural or artificial, perennial or temporary, with water that is stagnant or flowing, fresh, brackish, or saline (Chatterjee et al, 2010). There is no scientific definition of HAWs, we would use the following general working definition: HAWs can be seen as any kind of temporarily or perennial water saturated ground above the natural forest border and below the snow line within any high mountain region on earth. HAWs of the arid and semi-arid region of the Andes (HAWA) are situated in environments of relatively low annual precipitation and soil moisture deficits within a region known as Puna (Wilcox et al, 1986).

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call