Abstract
Climate change, land use intensification, and water abstraction magnify the frequency and severity of droughts but also result in totally unnatural hydrological patterns. Longer and more severe droughts slow down organic matter decomposition, whereas the effect of drying history, i.e. the specific sequence of different conditions to which organic matter is exposed, has seldom been addressed. Drying history could have important consequences for microbial communities colonizing and decomposing leaf litter in streams given the rapid fluctuations in microbial composition and processes. We studied whether the effects of drought-related impacts (stagnation, drying and both) on microbial activity and leaf litter decomposition are affected by the timing when peak stress (stagnation or drying) occurs, and whether the effect of the drying history is consistent among the three different stress types. In laboratory microcosms, we recreated areas with flowing water (aerated water), isolated pools with stagnant water (non-aerated water) and dry beds (dry microcosms). Combining these conditions and their sequence, we created nine treatments (ten with the control) differing in stress type (stagnation, drying, both) and timing of peak stress (early, middle, late), and measured fungal biomass, sporulation, microbial respiration, and microbial decomposition of alder leaf disks. The effects of drought-related stress conditions were not consistent among response variables. However, disturbances were systematically more detrimental to decomposition in early stages, resulting in a lower fungal biomass and activity, and reduced microbial litter decomposition. These results suggest that the effects of stress on decomposition-associated variables depend not only on the intensity of the stress, but also on its timing, with early stress and its legacy effects having greatest impact on leaf litter decomposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.