Abstract

Abstract Climate change is expected to affect the hydrological cycle, with considerable impacts on water resources. Climate-induced changes in the hydrology of the Rhine River (Europe) are of major importance for the riparian countries, as the Rhine River is the most important European waterway, serves as a freshwater supply source, and is prone to floods and droughts. Here regional climate model data from the Ensemble-Based Predictions of Climate Changes and their Impacts (ENSEMBLES) project is used to drive the hydrological model Precipitation–Runoff–Evapotranspiration–Hydrotope (PREVAH) and to assess the impact of climate change on the hydrology in the Rhine basin. Results suggest increases in monthly mean runoff during winter and decreases in summer. At the gauge Cologne and for the period 2070–99 under the A1B scenario of the Special Report on Emissions Scenarios, projected decreases in summer vary between −9% and −40% depending on the climate model used, while increases in winter are in the range of +4% to +51%. These projected changes in mean runoff are generally consistent with earlier studies, but the derived spread in the runoff projections appears to be larger. It is demonstrated that temperature effects (e.g., through altered snow processes) dominate in the Alpine tributaries, while precipitation effects dominate in the lower portion of the Rhine basin. Analyses are also presented for selected extreme runoff indices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.