Abstract

This article tests the association between streamflow alteration and the alteration of ecologically significant hydraulic environments. There has been a recent shift in environmental flow assessments to develop rapid desktop-based approaches that are applicable in a regional context. Streamflow statistics (e.g. minimum monthly flow) are often chosen to predict the impact of streamflow alteration on aquatic ecosystems. The assumption that the flow–biota relationship will be obscured by the effect of how streamflow interacts with channel morphology is often acknowledged, but not quantified. In this study, streamflow statistics are derived for 19 reaches in four river systems in Victoria, Australia. Hydraulic metrics were used to quantify ecologically significant surface flow conditions (Froude number) and the area of bench inundation, shallow and deep water. Multivariate analysis was used to investigate the correlation between streamflow statistics altered with regulation and the hydraulic metrics. It was found that streamflow statistics have a weak correlation to surface flow condition and the area of shallow water under natural streamflow conditions. The results show that hydrologic statistics have limited utility in quantifying changes in hydraulic environments. A similar magnitude of flow alteration can produce diverse hydraulic results. The confounding influence of channel morphology prevents streamflow statistics being an adequate surrogate for the assessment of hydraulic alteration. Modelling flow–biota relationships in a regional context is limited by the inadequacy of streamflow statistics to model ecologically significant hydraulic function. Improving knowledge of ecohydraulically significant hydrologic statistics will improve the effectiveness of environmental flow planning to sustain instream habitat conditions. A probabilistic approach is required to enable a risk-based approach to desktop generalization of flow–biota relations.Editor Z.W. Kundzewicz; Guest editor M. AcremanCitation Turner, M. and Stewardson, M., 2014. Hydrologic indicators of hydraulic conditions that drive flow–biota relationships. Hydrological Sciences Journal, 59 (3–4), 659–672.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call