Abstract
AbstractSatellite-retrieved precipitation has the potential to support flood modeling in mountainous areas. However, to reach this potential satellite estimates need to be corrected for the severe underestimation exhibited in orography-induced heavy precipitation events (HPEs). This paper assesses an existing satellite precipitation error correction technique driven by high-resolution numerical weather prediction (NWP) simulations of HPEs in complex terrain. The study is based on NOAA Climate Prediction Center morphing technique (CMORPH) high-resolution precipitation estimates of six such events induced by hurricane landfalls in the southern Appalachian mountainous region. A distributed hydrological model (Coupled Routing and Excess Storage model) is applied to evaluate the impact of the proposed satellite precipitation error correction on flood simulations for 20 basins of various sizes in this mountainous region. The results demonstrate significant improvements due to the NWP-based adjustment technique in terms of both the precipitation error characteristics and corresponding runoff simulations. These improvements are shown to be comparable to those from the postprocessed gauge-adjusted CMORPH precipitation product, which is promising for advancing hydrologic uses of satellite rainfall in mountainous areas lacking ground observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.