Abstract

The enzymatic promiscuity concept involves the possibility that one active site of an enzyme can catalyse several different chemical transformations. A rational understanding of the mechanistic reasons for this catalytic performance could lead to new practical applications. The capability of certain hydrolases to perform the perhydrolysis was described more than a decade ago, and recently its molecular basis has been elucidated. Remarkably, a similarity between perhydrolases (cofactor-free haloperoxidases) and serine hydrolases was found, with both groups of enzymes sharing a common catalytic triad, which suggests an evolution from a common ancestor. On the other hand, several biotechnological applications derived from the capability of hydrolases to catalyse the synthesis of peracids have been reported: the use of hydrolases as bleaching agents via in situ generation of peracids; (self)-epoxidation of unsaturated fatty acids, olefins, or plant oils, via Prileshajev epoxidation; Baeyer-Villiger reactions. In the present review, the molecular basis for this promiscuous hydrolase capability, as well as identified applications are reviewed and described in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call