Abstract

AbstractDuring the summer, from 1996–2000, vertical profiles of conductivity, temperature and transmissivity were obtained near the tidewater glacier of Marian Cove, King George Island, Antarctic Peninsula. The aims for the study were to determine the short-term variations of water structure due to hydrographic forcings and to understand sedimentation of suspended particulate matter in Antarctic fjord environments. Four distinct water layers were identified in the ice-proximal zone of the cove: i) a surface layer composed of cold and turbid meltwater, ii) a relatively warm Maxwell Bay inflow layer with characteristics of outer fjord water, iii) a turbid/cold mid-depth layer (40–70 m) originating from subglacial discharge, and iv) a deep layer comprised of the remnant winter water. The main factor influencing the characteristics of glacial meltwater layers and driving deposition of suspended particles in the cove is tidal forcing coupled with wind stress. The relatively small amount of meltwater discharge in Marian Cove yields low accumulation rates of non-biogenic sedimentary particles in the cove. The response to north-western and western winds, coupled with flood tide, may promote settling and sedimentation of suspended particles from turbid layers in the ice-proximal zone of the cove.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.