Abstract

We present here an assessment of in situ hyperspectral bio-optical variability in the Vaigat-Disko Bay and Godthabsfjord along the southwest coast of Greenland. The dataset consists of state-of-the-art profiler measurements of hyperspectral apparent and inherent optical properties of water complemented by traditional observations of Secchi disk and Forel Ule scale in the context of ocean color. Water samples were collected and analyzed for concentration of optically active constituents (OACs). Near-surface observations of hydrographic parameters revealed three different water masses in the Bay: meltwater plume, frontal zone, and Atlantic water mass. Underwater spectral light availability reveals three different spectral types. Low salinity, increased temperature, deep euphotic depths, and case-1 water type remote sensing reflectance spectra with tabletop peaks in the 400–500 nm wavelength range characterize the glacial meltwater plume in the Vaigat-Disko Bay. The conservative relationship between salinity and chromophoric dissolved organic matter (CDOM) commonly observed in estuarine and shelf seas is weaker in the Godthabsfjord and reverses in the Vaigat-Disko Bay. Efficiency of machine learning techniques such as cluster analysis is tested in delineating water masses in the bay w.r.t. hydrographic and bio-optical parameters. Tests of optical closure yield low root mean square error at longer wavelengths. The study provides strong evidence that despite similar geographic setting, fjord ecosystems exhibit contrasting bio-optical properties which necessitate fjord-specific investigations.

Highlights

  • Coastal ecosystems and society in Greenland are experiencing the effects of global climate change

  • Based on temperature and salinity distribution, we identified three distinct surface water masses in the Bay (Figures 3A,B): a glacial meltwater plume, Atlantic water mass and a frontal zone

  • Shelf water masses that advect into the Bay were evident in the Temperature vs. Salinity (TS) plot (Figure 4C)

Read more

Summary

Introduction

Coastal ecosystems and society in Greenland are experiencing the effects of global climate change. Over the last two decades, the net mass loss from the Greenland ice sheet has more than doubled (Rignot and Kanagaratnam, 2006). The major changes in physical forcing factors include, increased melting and calving of the Greenland ice sheet, changed coastal circulation and subsequent oceanto-shelf heat exchange, and reduced sea ice coverage (Hansen et al, 2012; Straneo et al, 2012). Terrestrial and marine processes influence the fjords, making them vulnerable to changes in both, seaice cover and meltwater input. The fjords play a regulating role in the ongoing mass loss of the Greenland ice sheet and have sparked interest within the scientific community (Straneo and Cenedese, 2015)

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call