Abstract

Low dissolved oxygen concentrations are of increasing concern in aquatic ecosystems, particularly at the interface between freshwater and marine environments. Oxygen depletion occurs naturally in many perennially stratified systems and it remains to be seen how climate change will affect these habitats. This is due, in part, to a lack of high-resolution, long-term data describing interannual variability in dissolved oxygen concentrations within stratified basins. Physicochemical parameters for Lough Furnace, an ecologically important tidal lagoon, were assessed using daily measurements (2009–14) from an undulating CTD (conductivity, temperature and depth) profiler and observations of tidal exchange flow. Continuous vertical saline stratification existed, with anoxia (<0.1mgL–1) typically persisting below 6m. Tidal inflows were generally restricted, with deep-water renewal events by intrusions of denser spring tidal water occurring episodically (three times in 6 years), following prolonged periods of low freshwater input. Although wind forcing alone was not sufficient to generate basin-scale mixing, the conditions that led to deep-water renewals may also be conducive to wind-driven upwelling events in nearshore areas. These findings have wider application to larger-scale two-layered stratified systems with deep anoxia because the ability to forecast such dynamic events is important for assessing the ecological implications of dissolved oxygen depletion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.