Abstract

There has been a noticeable change in runoff processes in cold regions under climate warming and a shrinking cryosphere; this is receiving increased scientific attention. This study explored the changing hydrological processes of the Anyuan river basin, in the north-eastern Tibetan Plateau, via stable isotope tracing of 202 samples from precipitation, supra-permafrost water, river water, groundwater, and soil water from 2013 to 2014. The isotopic composition of precipitation was characterized with maximum values in summer and minimum values in winter. The similar variations for stable isotopes of river water, spring water, and well water, confirming the close hydraulic connection among them within the study basin. In terms of soil water, the stable isotope value changes continuously with depth due to recharge by infiltration of precipitation and subsequent transpiration and evaporation. It demonstrated that river water was sourced mainly from precipitation and supra-permafrost water. Hydrograph separation indicated that supra-permafrost water and precipitation contributed 24% and 76% on average, respectively, to river water in the basin. This study will provide a scientific basis for water resource management in the north-eastern Tibetan Plateau.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.