Abstract

Predicting the susceptibility of rockfall mountain hazards for block-in-matrix soils is challenging for critical steep cuts. This research illustrates a hydrogeotechnical approach for the prediction of rockfall triggering by performing laboratory tests on low-cohesive-matrix soil collected from steep slopes with 85° to 88° angles at the Tatta Pani site, Karakorum Highway (KKH), and then real-scale moisture-induced rockfall was conducted on site for the validation of laboratory data. Laboratory data of forty quick direct shear tests on samples collected from the field depicted a 3-fold drop in peak shear stress (PS) at the soil–soil interface and a 9.3-fold drop at the soil–rock interface by varying the moisture content from 1% (taken as dry phase) to a critical laboratory moisture content (MC)LC of 21% (taken as wet phase). Similarly, a drop in the elastic modulus (ES) was observed to be 5.7-fold at the soil–soil interface and 10-fold at the soil–rock interface for a variation of moisture content from 1 % to 21% for the matrix with a permeability (k) range of 3 × 10−4 to 5.6 × 10−4 m/s, which depicts the criticality of moisture content for the rockfall phenomenon. The critical moisture content evaluated in laboratory is validated by an innovative field-inundation method for thirty-two moisture-induced real-scale forced rockfall cases, which showed the rock-block triggering at field dry density (γd)f and the critical field moisture content (MC)FC of the matrix ranging from 1.78 g/cm3 to 1.92 g/cm3, and 1.3% to 25.4%, respectively. Hydrogeotechnical relations, i.e., MC versus PS and ES, at the soil–rock interface are developed for the prediction of rockfall triggering. The proposed correlations may be helpful in the prediction of rockfall hazards by using expected rainfall in the field for disaster warning and landslide disaster prevention at ecological geotechnical engineering projects. The results revealed that the critical (MC)FC and (MC)LC are within 20%, depicting a good confidence level of the outcomes of this research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.