Abstract

Land subsidence is the gradual or sudden dropping of the ground surface developed by increasing the total stress. Most studies have discussed the relationship between land subsidence with groundwater level. However, there is a lack of discussion on groundwater environmental changes after occurring land subsidence. This study aimed to evaluate the hydrogeological and water chemistry characteristics of construction sites with land subsidence. Land subsidence in the Yangyang coastal area occurred suddenly on August 3, 2022, when the retaining wall of the construction collapsed. The groundwater level was measured three times, and water samples were collected twice between August 5, 2022, and September 5, 2022, for laboratory analysis. After land subsidence occurred, the average groundwater level was - 19.91m ground level (GL) on August 9, 2022, and finally decreased to - 19.21m GL on September 05, 2022. The groundwater levels surrounding the construction site gradually increased for a month. The electrical conductivity value measured at the monitoring wells ranged from 89 to 7800 μS/cm, and four wells exceeded the measurement limit near the groundwater leaked points. The highest mixing ratio of leaked water samples, collected on August 9, 2022, was 27.6%. Furthermore, the fresh groundwater-saltwater interface depth was estimated to be above the construction bottom. Although groundwater levels recovered, the groundwater quality continuously is affected by saltwater. This finding could contribute to understanding the hydrogeological characteristics surrounding construction sites with land subsidence and provide insight into the hydrochemical evolution process during declined groundwater levels in coastal aquifers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.