Abstract

Rainfall, throughfall, stemflow and spring were studied in a secondary forest during a wet season from April to August in 2006. Some of the chemicals in throughfall, stemflow and spring were increased in contrast with incident rainfall. Specifically, Cl−, HCO3−, Na+ and Ca2+ were leached negatively in throughfall, but K+ and Mg2+ were leached positively. In stemflow, Cl− and Na+ were leached negatively, the others were leached positively and their concentrations were higher than those in throughfall. Total carbon, organic carbon and inorganic carbon in throughfall and stemflow were increased as rainfall went through the secondary forest. The concentration of free CO2 in rainfall was lower than both, throughfall and stemflow; the relationship between total acidity and free CO2 was linear. pH of throughfall and stemflow , such as maximum, minimum and mean, were lower than that of rainfall and the extent of pH in spring was changed minimally. We came to a conclusion that rainfall via the secondary forest can lead to further erosion, accelerate the biogeochemical cycle in epikarst zone, enhance the effective state of alkali elements in the soil, supply vegetation with more nutrients and advance vegetation’s growth and succession, which are reasonably sufficient to form a stable karst ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.