Abstract

Uranium and radon concentrations in groundwater from the Goesan area of the Ogcheon Metamorphic Belt (OMB), central Korea, whose bedrock is known to contain the highest uranium levels in Korea, were analyzed from 200 wells. We also measured the uranium concentrations in the bedrock near the investigated wells to infer a relationship between the bedrock geology and the groundwater. The five geologic bedrock units in the Goesan area consist of Cretaceous granite (Kgr), Jurassic granite (Jgr) and three types of metasedimentary rocks (og1, og2, and og3). The percentages of the groundwater samples over 30 μg/L (maximum contaminant level, MCL of US EPA) were 2.0% of the 200 groundwater samples; 12% of Kgr and 1.8% of Jgr exceeded the MCL, respectively. Overall, 16.5% of the 200 groundwater samples exceeded 148 Bq/L (alternative maximum contaminant level, AMCL of US EPA); 60.0% of Kgr and 25.0% of Jgr exceeded the AMCL, but only 0% of og1, 7.9% of og2, and 2.6% of og3 exceeded the value, respectively. No direct correlation was found between uranium concentration and radon concentration in water samples. Radon has a slightly linear correlation with Na (0.31), Mg (−0.30), and F (0.36). However, uranium behavior in groundwater was independent of other components. Based on thermodynamic calculation, uranium chemical speciation was dominated by carbonate complexes, namely the Ca2UO2(CO3)3(aq) and CaUO2(CO3)32− species. Although uraniferous mineral phases designated as saturation indices were greatly undersaturated, uranium hydroxides such as schoepite, UO2(OH)2 and U(OH)3 became possible phases. Uranium-containing bedrock in OMB did not significantly affect radioactive levels in the groundwater, possibly due to adsorption effects related to organic matter and geochemical reduction. Nevertheless, oxidation prevention of uranium-containing bedrock needs to be systematically managed for monitoring the possible migration of uranium into groundwater.

Highlights

  • We investigated uranium and radon concentrations in groundwater samples and interpreted their relationships based on geological units

  • The high uranium concentrations in groundwater from Kgr were primarily due to the high uranium content in the Kgr rock

  • No direct correlation was found between uranium concentration and radon concentration in groundwater samples

Read more

Summary

Introduction

Among the naturally occurring radioactive materials in groundwater, uranium and radon are of most concern to human health. As uranium has a long half-life, its chemical toxicity as a heavy element is of greater concern than its radioactivity. The long-term intake of groundwater containing higher levels of uranium may result in kidney toxicity [1]. Odorless inert gas resulting from the radioactive decay of radium. The long-term consumption of radon-rich water has been linked to a possible increase in the risk of stomach and lung cancer [2]. Because of the health risks related to uranium and radon

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call