Abstract

AbstractEnvironmental changes in the northern Antarctic Peninsula provide a sensitive local indicator of climate warming. A consequence of these changes is the activation of surface and subsurface hydrological cycles in areas where water, in colder conditions, would remain frozen. This paper analyses the effects of hydrological cycle activation at Cape Lamb, Vega Island. The conclusions are based on hydrochemistry and isotope interpretation of 51 representative water samples from precipitation, streams, lakes, ice, snow and groundwater. Based on these results relationships between the different components of the hydrological cycle are proposed. This paper highlights the important contribution of groundwater to surface water chemistry, the disconnection of the lakes from the overall flow, the lack of an ocean spray signature in surface water and groundwater and the significant influence of windblown dust in the composition of the analysed waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.