Abstract
High concentration of fluoride (up to 20.9 mg/L) in groundwater with significant variation (p = 5.9E-128) among samples was reported from Birbhum district, an acknowledged fluoride endemic region in India. The groundwater samples (N = 368) were grouped based on their hydrochemical properties and aquifer geology for hydro-geochemical characterization. Friedman’s test showed p < 0.0001 confidence level which indicates that fluoride concentration among geological groups and water groups are independent. Bland-Altman plot was used to study the inter-relationships among the groups through bias value (∂) and limit of agreement (LoA). Among the geological groups, laterites and granite-gneiss groups exhibited statistically significantly difference in fluoride geochemistry; whereas the younger and older alluvium groups displayed similar characteristics. The fluoride concentration was found to be in the order Lateritic > Granite-gneiss > Older alluvium ≥ Younger alluvium. Dissolution of minerals (such as fluorite, biotite) in laterite sheeted basalt, and granite-gneiss is the main source of groundwater fluoride in the region. Fluoride concentration is also influenced by depth of water table. Hydrochemical study indicated that fluoride concentration was higher in Na–HCO3 than in Ca–SO4 and Ca–HCO3 type of groundwater. The fluoride concentration were positively correlated with Na+ and pH and negatively correlated with the Ca2+ and Mg2+ signifying linkage with halite dissolution and calcite, dolomite precipitation. Geostatistical mapping of WQI through empirical bayesian kriging (EBK) with respect to regional optimal guideline value (0.73 mg/L) classified that groundwater in some parts of the district are unfit for drinking purpose. Health survey (N = 1767) based on Dean’s criteria for dental fluorosis indicated presence of slight to moderate dental hazard. Besides, providing baseline data for management of groundwater quality in the study area, the study demonstrated the applicability of Bland-Altman analysis and empirical bayesian kriging (EBK) in delineation and interpolation of fluoride contaminated region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.