Abstract

Abstract: Analyses of major elements, environmental isotope ratios (δ18O, δ2H), and PHREEQC inverse modeling investigations were conducted to understand the processes controlling the salinization of groundwater within the Datong Basin. The hydrochemical results showed that groundwater with high total dissolved solid (TDS) concentrations was dominated by sodium bicarbonate (Na‐HCO3), sodium chlorite (Na‐Cl), and sodium sulfate (Na‐SO4) type waters, whereas low‐TDS groundwater from near mountain areas was dominated by calcium bicarbonate (Ca‐HCO3) and magnesium bicarbonate (Mg‐HCO3) type waters. The characterization of the major components of groundwater and PHREEQC inverse modeling indicated that the aluminosilicate hydrolysis, cation exchange, and dissolution of evaporites (halite, mirabilite, and gypsum) governed the salinization of groundwater within the Datong Basin. The environmental isotope (δ18O, δ2H) and Cl−/Br− ratios revealed the impact of fast vertical recharge by irrigation returns and salt‐flushing water on the groundwater salinization. According to the analyses of major hydrochemical components and PHREEQC inverse modeling, evaporite dissolution associated with irrigation and salt‐flushing practice was probably the dominant controlling factor for the groundwater salinization, especially in the central part of the basin. Therefore, groundwater pumping for irrigation and salt‐flushing should be controlled to protect groundwater quality in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.