Abstract
Hydrogen gas (H2) has been recently regarded as a novel gaseous signaling molecule that performs multiple functional roles in plant. Here, we demonstrate that hydrogen rich water (HRW)—an experimentally tractable reagent to assess the effects of the H2 significantly delays wheat aleurone layer programmed cell death (PCD) induced by gibberellic acid (GA). Endogenous H2 production exhibited lower level in aleurone layers under GA treatment, whereas the H2 production was apparently increased under abscisic acid (ABA) treatment. HRW not only increased H2 production but also delayed GA-induced PCD. We further observed that application of HRW substantially prevented the increases of hydrogen peroxide (H2O2) and superoxide anion radical (O2.-) triggered by GA. HRW also directly react with hydroxyl radical (·OH) to delay GA-induced PCD. Quantitative real-time PCR (qRT-PCR) and biochemical assays showed that HRW induced the transcripts and enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) that metabolize reactive oxygen species (ROS); these increases coincided with the observed changes in O2.-, H2O2 and ·OH accumulation upon GA treatment. Our study therefore suggests that HRW-triggered alleviation of wheat aleurone layer PCD induced by GA results from a combination of H2-mediated decreases of ROS levels, including O2.-, H2O2, and ·OH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.