Abstract
In current paper, thermodynamics study of palm oil mill effluent (POME) steam reforming was performed to investigate its feasibility for syngas production. By using the minimization of total Gibbs free energy method, the thermodynamic simulation is executed to study the effect of reaction temperature (573–1173 K) on product yield (Yi) and syngas ratio (H2:CO). Based on preliminary analysis, the POME liquor composed of 99.73% water and 0.27% organic contents by mole. Complete conversion of POME's organic contents is accomplished regardless of reforming temperature. However, the equilibrium constant reveals that not every organic constituent in POME are reformed into syngas via steam reforming at ≤673 K, so their disappearance hints at the occurrence of thermal decomposition. The steam reforming of all organic contents in POME is only viable at ≥773 K. From POME steam reforming at 573–1173 K, H2-rich syngas (H2:CO ratio = 25–3457) is produced. For syngas production, the optimum temperature is 1073 K because it gives highest Ysyngas (58348 μmol syngas/mol POME) with a Qrequired of 12.05 kJ/mol POME. In a nutshell, the POME steam reforming is an alluring process that viable for syngas production as it potentially mitigates the environmental issue inflicted by palm oil processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Hydrogen Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.