Abstract

A fast neutron has strong penetration ability through dense and bulky objects, which makes it an ideal nondestructive technology for detecting voids, cracks, or other defects inside large equipment. However, the lack of effective fast neutron detection materials limits its application. Perovskites have shown excellent optical properties in many areas, but they are absent from fast neutron detection imaging because they cannot directly absorb fast neutrons and emit luminescence. Here, we demonstrate a hydrogen-rich long-chain organic amine modified two-dimensional (2D) perovskite fast neutron scintillator, Mn-(C18H37NH3)2PbBr4(Mn-STA2PbBr4). Its hydrogen density can reach 9.51 × 1028 m-3, and the photoluminescence quantum yield can reach 58.58%, so it is possible to integrate fast neutron absorption and luminescence into a single compound. More importantly, Mn-STA2PbBr4 can be made into a large-area self-supporting fast neutron scintillator plate with satisfactory spatial resolution (0.5 lp/mm (lp: line pairs)). This strategy provides a simple and promising choice for fast neutron scintillator nondestructive testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call