Abstract

The reactions with hydrogen of propane, butane, 2-methylpropane, pentane, 2-methylbutane, 2, 2-dimethylpropane and cyclopentane have been studied in a static reactor using a series of highly dispersed rhodium-platinum catalysts supported on high-area silica. The main reaction over all catalysts was hydrogenolysis involving the breaking of a single carbon-carbon bond. Most of the compounds reacted at similar rates over platinum with activation energies in the range 132-144 kJ mol -1 . With rhodium, rates varied with hydrocarbon structure by factors of more than 10 2 . The selectivities for the formation of the various products showed that the relative rates of breaking different carbon-carbon bonds over rhodium were S-S > P-S > S-T > P-T > P-Q (P = primary, Q = quaternary, S = secondary and T = tertiary). At temperatures above 455 K, there was evidence of a change of rate-determining step over rhodium with the overall reaction becoming controlled by the rate of desorption of methane. Probable mechanisms over platinum and rhodium are discussed. Rhodium was more active than platinum by factors of about 200 for branched hydrocarbons and of 10 3 or more for straight-chain compounds. Patterns of activity with metal composition are interpreted in terms of active sites consisting of ensembles of about six metal atoms. But an alternative description of the active site as a single metal atom with properties influenced by a number of nearest neighbours cannot be excluded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.