Abstract

Subcritical crack growth and tensile ductility measurements have been made on a 12 Cr-1 Mo ferritic stainless steel at cathodic potentials in a 1 N H2SO4 solution at 25 °C. The tensile ductility was found to be a minimum at −600 mV (SCE) and both the subcritical crack growth behavior and tensile ductility were similar for material in the tempered (760 °C/2.5 h) or tempered-plus-segregated (540 °C/240 h) condition. A rising-load crack growth threshold of 20 MPa √m was measured and a rising-load fracture toughness of 110 MPa √m was determined from extrapolation of the stage III crack growth curve. A K-independent stage II was observed and a stage II crack growth rate of about 1 × 10−5 mm/s was measured. The fracture mode was a mixture of intergranular and quasi-cleavage for both heat treatments and for subcritical and tensile fracture tests. Impact fracture properties were independent of heat treatment and grain boundary composition with the fracture mode predominantly transgranular. The difference in the fracture mode for hydrogen-induced crack growth and dynamic crack growth was explained by a difference in the relationship between their stress profiles and the maximum grain boundary segregation distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.