Abstract

The cubic phase of boron nitride (c-BN) is an extremely promising multifunctional material. However, to exploit all possible applications, large area chemical vapor deposition (CVD) of c-BN films is required. For a successful CVD growth of high-quality c-BN films one must obtain a deeper understanding about the structural and electronic properties of the dominant c-BN growth surfaces under CVD conditions, that is, the (100), (110), and (111) surfaces, and their modification in the presence of surface stabilizing atomic hydrogen (H). In the present study, the surface stabilizing effect of H on the B- and N-terminated (1 × 1), (2 × 1), (2 × 4), (2 × 4(3)), and c(2 × 2) surfaces of c-BN(100) has therefore been investigated using density functional theory (DFT) calculations. It was found that a 100% surface coverage of on-top H on the B-terminated c-BN(100) surfaces is not able to uphold an ideal bulk-like (1 × 1) structure. However, the H atoms were able to uphold a bulk-like bond angle and bond length for t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call