Abstract
The hydrogen-bonding network in anhydrous chitosan crystal was studied using a combination of neutron crystallography and quantum chemical calculation. The locations of the hydroxyl hydrogen were directly resolved using Fourier omit maps applied to neutron diffraction data, whereas the amino hydrogen atoms were determined based on geometrical optimization using periodic density functional theory (DFT) calculation. Energy optimization of the hydrogen positions based on DFT calculation allowed the measurement of the hydrogen-bond energies. In the chitosan crystal, the hydroxyl groups mostly play a role as hydrogen-bond donors while the amino moiety behaves as a strong acceptor but a poor donor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.