Abstract

ωB97XD/6-311++G(d,p) calculations were carried out to investigate the hydrogen-bonding interactions between adrenaline (Ad) and water. Six Ad-H(2)O complexes possessing various types of hydrogen bonds (H-bonds) were characterized in terms of their geometries, energies, vibrational frequencies, and electron-density topology. Natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses were performed to elucidate the nature of the hydrogen-bonding interactions in these complexes. The intramolecular H-bond between the amino and carboxyl oxygen atom of Ad was retained in most of the complexes, and cooperativity between the intra- and intermolecular H-bonds was present in some of the complexes. H-bonds in which hydroxyls of Ad/water acted as proton donors were stronger than other H-bonds. Both hydrogen-bonding interactions and structural deformation play important roles in the relative stabilities of the complexes. The intramolecular H-bond was broken during the formation of the most stable complex, which indicates that Ad tends to break the intramolecular H-bond and form two new intermolecular H-bonds with the first water molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.