Abstract

We describe the synthesis, supramolecular ordering on surfaces and in solution, and photophysical characterization of OPV4UT-PERY, an oligo(p-phenylenevinylene) (OPV) with a covalently attached perylene bisimide moiety. In chloroform, the molecule forms dimers through quadruple hydrogen bonding of the ureido-s-triazine array. This is supported by scanning tunneling microscopy (STM) studies, which reveal dimer formation at the liquid (1,2,4-trichlorobenzene)/solid (graphite) interface. Moreover, contrast reversal in bias-dependent STM imaging provides information on the ordering and different electronic properties of the oligo(p-phenylenevinylene) and perylene bisimide moieties. In dodecane, the molecule self-assembles into H-type aggregates that are still soluble as a result of the hydrophobic shell formed by the dodecyloxy wedges. The donor-acceptor molecule is characterized by efficient energy transfer from the photoexcited OPV to the perylene bisimide. Mixed assemblies with analogous OPVs lacking the perylene bisimide unit have been prepared in dodecane solution and energy transfer to the incorporated perylene bisimides has been studied by fluorescence spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.