Abstract

Membrane separation technology provides an alternative to traditional thermally driven separations, owing to its advantages including low cost, energy-savings and environmental friendliness. However, the current membrane technology for gas separations using polymeric materials suffers the challenge of gas permeability-selectivity trade-offs. To overcome this hurdle, high-separation performance hybrid membranes are developed herein using microporous UiO-66-(OH)2 and PIM-1. Due to the stable interfacial hydrogen bonding, the MOF loading crosses the percolation threshold in hybrid membranes, and dual-path transport mechanisms govern the gas diffusion. Accordingly, the hybrid membranes with 40 wt% MOF loading exhibit a H2 permeability up to 9167.6 Barrer, transcending the 2008 H2/CH4 and H2/N2 Robeson upper bounds. Compared to neat PIM-1 membranes with a H2 permeability of 2378.3 Barrer, the H2 permeability of hybrid membranes increases over 285%, demonstrating ultra-high gas permeability. The design approach of hybrid membranes provides a viable pathway for the manufacture of hydrogen-bonded hybrid membranes with potential applications for hydrogen separation and CO2 capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.