Abstract

Theoretical and experimental studies have elucidated the bonding mechanism in hydrogen bonds as an electrostatic interaction, which also exhibits considerable stabilization by charge transfer, polarization, and dispersion interactions. Therefore, these components have been used to rationalize the differences in strength of hydrogen‐bonded systems. A completely new viewpoint is presented, in which the Pauli (steric) repulsion controls the mechanism of hydrogen bonding. Quantum chemical computations on the mismatched DNA base pairs CC and GG (C=cytosine, G=guanine) show that the enhanced stabilization and shorter distance of GG is determined entirely by the difference in the Pauli repulsion, which is significantly less repulsive for GG than for CC. This is the first time that evidence is presented for the Pauli repulsion as decisive factor in relative hydrogen‐bond strengths and lengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.