Abstract

BackgroundThe heavy metal ion Cd2+ is acutely toxic, and excessive concentrations can have adverse effects on human production and life, and even lead to significant public health risks and environmental impacts. There are several mature non-electrochemical methods for heavy metal detection, but these methods are characterized by high cost, which makes it difficult to be applied to the field for timely detection. Therefore, it is necessary to prepare a new electrochemical sensor that is environmentally friendly and capable of detecting Cd2+ in the environment quickly, easily and sensitively. ResultsIn this study, hydrogen-bonded organic frameworks (HOFs) were synthesized by a simple hydrothermal reaction. The prepared materials consisted of only C, N and O and had a thin lamellar structure. The HOFs were integrated into a novel electrochemical sensor to achieve accurate detection of Cd2+ ions in real aqueous environments by square wave anodic dissolution voltammetry. The sensor has a wide linear range and a detection limit as low as 0.13 μg/L. Several real water samples, such as tap water, lake water, and e-cigarette digest, were analyzed to simulate the working environment of the sensor, and the results showed that the recoveries of Cd2+ ranged from 95.75 % to 101.2 %. SignificanceWe pioneered the detection of heavy metal ions Cd2+ in e-cigarette digestate samples with the innovative use of HOFs as the sensor material, which demonstrated the potential application in electrochemical sensing with extremely low background current value and high sensitivity, providing new ideas for environmental monitoring and public health control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.