Abstract

The hydrogen-abstracted radicals from the adenine-uracil (AU) base pair have been studied at the B3LYP/DZP++ level of theory. The A(N9)-U and A-U(N1) radicals, which correspond to hydrogen-atom abstraction at the adenine N9 and uracil N1 atoms, respectively, were predicted to be the two lowest-lying among the nine (AU-H) radicals studied in this study. The removal of the amino hydrogen of the adenine moiety that forms a hydrogen bond with the uracil O4 atom in the AU pair resulted in radical A(N6a)-U, which has the smallest base-pair dissociation energy, 5.9 kcal mol(-1). This radical is more likely to dissociate into the two isolated bases than to recover the hydrogen bond with the O4 atom through N6-H bond rotation along the C6-N6 bond. In general, the radicals generated by C-H bond breaking were higher in energy than those arising from N-H bond cleavage, because the unpaired electrons in the carbon-centered radicals were mainly localized on the carbon atom from which the hydrogen atom was removed. However, the highest-lying radical was found to arise from removal of the N3 hydrogen of uracil. The most remarkable structural feature of this radical is a very short C-H...O distance of 2.094 A, consistent with a substantial hydrogen bond. Although this radical lost the N1...H-N3 hydrogen bond between the two bases, its dissociation energy was predicted to be 12.9 kcal mol(-1), similar to that of the intact AU base pair. This is due to the transfer of electron density from the adenine N1 atom to the uracil N3 atom.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call