Abstract

Abstractgem‐Hydrogenation of propargyl alcohol derivatives with [CpXRu(MeCN)3]PF6 (CpX=substituted cyclopentadienyl) as catalysts affords cationic pianostool ruthenium carbene complexes which are so electrophilic that they attack a tethered olefin to furnish cyclopentene products; cyclopropanation or metathesis do not compete with this novel transformation. If the transient carbenes carry appropriate propargylic substituents, however, they engage in ([2,3]‐sigmatropic) rearrangements to give enol esters (carbonates, carbamates, sulfonates) or alkenyl halides. Both pathways are unprecedented in the vast hydrogenation literature. The proposed mechanistic scenarios are in line with labeling experiments and spectroscopic data; most notably, PHIP NMR spectroscopy (PHIP=parahydrogen induced polarization) provides compelling evidence that the reactions are indeed triggered by highly unorthodox gem‐hydrogenation events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call