Abstract

Phenylalanine (Phe) is a significant amino acid that cannot be synthesized by human themselves but must be taken from environment. It was initially found that the nanosized amorphous Ni-B/SiO 2 alloy prepared by the chemical reduction method was an effective catalyst for the preparation of Phe from phenylpyruvic acid (PPA) by amination and hydrogenation. It has been found that the amorphous Ni-B/SiO 2 alloy catalyst exhibits superior activity and selectivity to the traditional catalysts Raney Ni and Urushibara nickel. The effects of reaction time, amounts of catalysts and ammonia solution, reaction temperature, and H 2 pressure on the reaction have been investigated systematically. The results indicated that the yield of Phe was 97.9%, and the selectivity for Phe reached 98.9% when the reaction was carried out for 3 h at 333 K and 2.0 MPa of H 2 with m(Cat.) : m(PPA) = 0.6 : 1.0 and n(NH 3) : n(PPA) = 3 : 1. The catalysts were characterized by XRD, AAS, XPS, BET, and TEM, and the relationship between the catalyst structure and the catalytic activity was discussed in detail. It was found that the reason why Ni-B/SiO 2 amorphous alloy catalyst was much more active for the preparation of Phe could be accounted for by the presence of electron-rich Ni due to electron donation from alloying B; the smaller size of Ni-B particles, the larger specific surface area of Ni-B/SiO 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call