Abstract
The use of the complex [Ru3(CO)12] (1) as a catalyst precursor (0.1mol%) at 200°C, 60psi of H2, along with triphenylphosphine (TPP) generated ruthenium nanoparticles (Ru-Nps); this occurred in the presence of pyridine-nitriles leading to a variety of hydrogenation (secondary amine, imine, or imidazole) products, depending of the pyridine-nitrile used, under similar reaction conditions. This relates to relatively good to modest yields, determined by the substituents in the corresponding pyridine. In sharp contrast, the use of aromatic dinitriles did not generate Ru-Nps at 140°C, 150psi of H2 and TPP, but allowed the homogeneous catalytic hydrogenation of the 1,4- and 1,3-dicyanobenzenes, to yield the corresponding CN-substituted secondary amine or imine. The main products were characterized by different analytical methods and spectroscopic techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.