Abstract

The conversion of furfural to furfuryl alcohol is one of the most significant reactions from industrial-scale produced biomass platform molecules to value-added chemicals. In this work, biomass-based chitosan was used as both a carbon source and nitrogen source to synthesize nitrogen-doped carbon. With the addition of cobalt, the optimized 7.5Co-NC-900 catalyst had the largest surface area and the graphite nanotube structure with the least defects. It was employed for the hydrogenation of furfural to furfuryl alcohol and reached a nearly full conversion and an equivalent yield at 130 °C in 4 MPa initial H2. The structure-function relationship study indicated that the N could interact with the neighbor Co in this catalyst and formed an electron-deficient Co center which was in favor of the adsorption of furfural in the nanotube and had high catalytic activity. The interactions between Co and N stabilized the catalyst so that it could remain stable in five runs of catalytic reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call