Abstract

AbstractThe hydrogenation of cyclopropenoid acids and their relative reactivities during hydrogenation as compared to linoleic and oleic acids were examined. Pure methyl sterculate and purifiedSterculia foetida oil and its methyl esters, which have a cyclopropene content more than 60 times that of cottonseed oil, were used for the hydrogenation experiments. Nickel, palladium and platinum catalysts were used. The effect of temperature and type of catalyst were demonstrated in a series of hydrogenation experiments of safflower andS. foetida oil mixtures, and methyl oleate and methyl dihydrosterculate mixtures. Partial hydrogenation of methyl sterculate formed as many as twenty compounds in addition to the cyclopropenoid derivatives. Most of these compounds were monounsaturated. The cyclopropene group hydrogenated very readily compared to the 9,12‐diene system in linoleate. The cyclopropane group obtained by hydrogenating the cyclopropenoid acids group was quite resistant to further attack by hydrogen and nickel catalyst had little effect. With palladium catalyst, a temperature of 180 C was necessary for the reaction to go to completion. Platinum in acetic acid was a good system for hydrogenolysis of the cyclopropane group at 80 C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call