Abstract

Nickel-based catalysts were prepared by co-precipitation method and applied for the CO2 conversion to synthetic natural gas. Two batches of catalysts were prepared with the different amount of Ni and were characterized by various techniques such as XRD, TPD, TPR, XPS, and TEM. Catalytic activity was studied under atmospheric pressure, a temperature of 350 °C, GHSV of 2000 h−1 and N2:CO2:H2 = 4:1:4. Highest CO2 conversion achieved was 70 with 99 % selectivity to methane. The activity of catalysts depends on the nickel content and nickel dispersion. Selectivity to methane depends inversely on the concentration of weak and moderate strength basic sites. Comparable quantity of basic sites present over catalysts, the methane selectivity is observed to be similar but the CO2 conversion changed due to change in Ni content. Catalysts having equal amounts of Ni exhibited increase in CH4 selectivity with the decrease in basic sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.