Abstract

A direct hydride transfer mechanism with three cascade cycles for the conversion of carbon dioxide and dihydrogen to methanol (CO2 + 3H2 → CH3OH + H2O) catalyzed by a half-sandwich cobalt complex [Cp*Co(bpy-Me)OH2]2+ (1) is proposed based on density functional theory calculations. The formation of methanediol via hydride transfer from Co to formic acid (4 → TS8,11) is the rate-determining step with a total barrier of 26.0 kcal/mol in free energy. Furthermore, 15 analogues of 1 are constructed by replacing the hydrogen atoms at the two meta and para positions of the bipyridine ligand with different functional groups (1b-1l), the carbon atoms in the bipyridine ligand with nitrogen atoms (1m-1o), and one pyridine ligand with N-heterocyclic carbene (1p). Among all newly proposed complexes, [Cp*Co(2,2'-bipyrazine)OH2]2+ (1n) is the most active one with a total barrier of 19.6 kcal/mol in free energy. Such a low barrier indicates 1n is a promising catalyst for efficient conversion of CO2 and H2 to methanol at room temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call