Abstract

The conversion of carbon dioxide to formate is of great importance for hydrogen storage as well as being a step to access an array of olefins. Herein, we have prepared a JMS-5 metal-organic framework (MOF) using a bipyridyl dicarboxylate linker, with the molecular formula [La2(bpdc)3/2(dmf)2(OAc)3]·dmf. The MOF was functionalized by cyclometalation using Pd(II), Pt(II), Ru(II), Rh(III), and Ir(III) complexes. All metal catalysts supported on JMS-5 showed activity for CO2 hydrogenation to formate, with Rh(III)@JMS-5a and Ir(III)@JMS-5a yielding 4319 and 5473 TON, respectively. X-ray photoelectron spectroscopy of the most active catalyst Ir(III)@JMS-5a revealed that the iridium binding energies shifted to lower values, consistent with formation of Ir-H active species during catalysis. The transmission electron microscopy images of the recovered catalysts of Ir(III)@JMS-5a and Rh(III)@JMS-5a did not show any nanoparticles. This suggests that the catalytic activity observed was due to Ir(III) and Rh(III). The high activity displayed by Ir(III)@JMS-5a and Rh(III)@JMS-5a compared to using the Ir(III) and Rh(III) complexes on their own is attributed to the stabilization of the Ir(III) and Rh(III) on the nitrogen and carbon atom of the MOF backbone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.